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COMMENT

Reply to ‘Relativistic formulation of quantum state
diffusion?’

Heinz-Peter Breuer and Francesco Petruccione
Albert-Ludwigs-Universiẗat, Fakulẗat für Physik, Hermann-Herder Straße 3, D–79104 Freiburg
im Breisgau, Germany

Received 1 June 1998, in final form 17 August 1998

Abstract. It has been demonstrated recently by the authors that the non-relativistic quantum
state diffusion model can be generalized to yield a consistent, relativistically covariant theory.
It is shown here that the ‘counterexample’ constructed by Diósi can easily be disproven.

1. Introduction

Recently, we have proposed [1–3] a relativistic generalization of the non-relativistic quantum
state diffusion model developed by Gisin and Percival [4]. In a recent comment Diósi
[5] made an attempt to show, with the help of a ‘counterexample’, an inconsistency in
our theory. We shall demonstrate here that, when applying our theory correctly, Diósi’s
‘counterexample’ can easily be disproven. In fact, as we shall see below Diósi’s example
involves an erroneous notion of covariance, and it uses incorrect transformation laws for
physical observables. Moreover, Diósi obviously missed the most important concept of our
theory, namely its Hilbert bundle structure, by which probabilities and expectation values
are determined in our theory.

In section 2 we shall briefly outline the most important general facts that led to our
formulation of a relativistic quantum state diffusion model for the Dirac electron. These
considerations serve to clarify the motivation and the physical content of our theory.
Section 3 is devoted to a detailed discussion of Diósi’s example. This discussion is
performed fully relativistically and it is demonstrated that there are no inconsistencies in
our theory.

2. General considerations

In a series of papers [6–8] Aharonov and Albert have demonstrated, with the help of many
examples, the following fact. If one takes into account the changes of the state vector
induced by local or non-local measurement processes in relativistic quantum theory, the
wavefunction ceases to be a functionψ = ψ(x) on the spacetime continuum, but becomes
a functionalψ = ψ(σ) on the set of spacelike hypersurfacesσ in Minkowski space. This
is a far-reaching conclusion which served as a starting point of our approach.

We briefly recall the simplest of the examples which led Aharanov and Albert to this
conclusion [8]. Suppose that in the infinite past an electron has been prepared in a state

0305-4470/98/479605+08$19.50c© 1998 IOP Publishing Ltd 9605



9606 H-P Breuer and F Petruccione

Figure 1. Illustration of the fact that the wavefunction is, in general, not a function on the
spacetime continuum.

which is given by a superposition of two wavepacketsχ(1) andχ(2) localized atx1 andx2,
respectively,

ψ(x) = χ(1)(x)+ χ(2)(x). (1)

In the following we shall neglect, for simplicity, the extension as well as the spreading
of these wavepackets. At the spacetime pointP a position measurement is performed
with the result that the electron is atP . Given such a situation we may consider two
spacelike hypersurfacesσ1 andσ2 which intersect at the spacetime pointQ (see figure 1).
Both hypersurfaces appear as equal-time hypersurfaces in appropriately chosen coordinate
framesK1 andK2, that is, there are observersO1 andO2 at rest inK1 andK2, respectively,
such thatσ1 is an equal-time hypersurface forO1, and σ2 is an equal-time hypersurface
for O2. The important difference between both observers is that forO2 the measurement
has already taken place, whereas forO1 it has not. Consequently, both observers assign
different amplitudes to one and the same objective spacetime pointQ, that is,ψ(Q) on
σ1 is different fromψ(Q) on σ2. The conclusion is thatψ is no longer a function of
the spacetime coordinates: The value ofψ at a spacetime point depends, in general, on
the hypersurface crossing this point and to which it is associated. Thus, the wavefunction
becomes a functional on the set of spacelike hypersurfaces and we may write

ψ = ψ(σ, x) (2)

wherex runs over the points of the hypersurfaceσ . We then have, for example, at the
spacetime pointQ of figure 1:

ψ(σ1,Q) = χ(2)(Q) 6= ψ(σ2,Q) = 0. (3)

We have used here the prescription that the state vector reduction occurs along all
spacelike hypersurfaces that cross the spacetime pointP which gives the classical measuring
event ‘the electron is atP ’. In fact, this is precisely the covariant state vector reduction
postulate of Aharonov and Albert. There are other proposals for the state vector reduction
[9] which have been demonstrated, however, to be in contradiction to the Hilbert space
structure of quantum mechanics [8].

As remarked earlier the above results served as a starting point for our construction of
a relativistic quantum state diffusion model. To this end, we use a covariant one-particle
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wave equation, the Dirac equation, and rewrite it as an equivalent evolution equation for
the statesψ(σ) attached to the various hypersurfacesσ ,

dψ(σ) = −idG(σ)ψ(σ). (4)

The explicit form of the generator dG(σ) in this equation can be found in [1–3]. The
important point to note here is that the derivation of this equation, which is presented
in [1], is similar to the one used in the well-known Schwinger–Tomonaga formulation of
relativistic quantum field theory. In fact, equation (4) can be obtained by projecting the
Schwinger–Tomonaga equation of QED onto the one-electron sector.

Let us now look at equation (7) of Diósi’s note. If we take the pointx of that equation
to be the pointQ of our figure 1, then we find that, in view of our equation (3), the innocent
looking equation (7) of Díosi is, in general, wrong! We shall give an example demonstrating
this below. The question therefore arises: Does this imply a violation of covariance? The
answer is, of course, no. To see this let us recall what is really meant by covariance [10].
Consider a Lorentz transformation

x 7→ x ′ = 3x + y. (5)

Covariance means that there is a unitary representationU(3, y) which relates the states in
different framesK andK ′ through

ψ ′(σ ′, x ′) = [U(3, y)ψ] (σ ′, x ′) = S(3)ψ(σ, x) (6)

such that the dynamical equation is invariant in form under these transformations.
This has been shown and discussed in detail in [1–3]. The important point to note here

is that the transformation (6) is unitary with respect to the scalar product

〈ψ(σ)|φ(σ)〉σ ≡
∫

d3x

n0
ψ̄(σ, x)nµγµφ(σ, x) (7)

for the states on the flat, spacelike hypersurfaceσ , wherenµ denotes its unit normal vector.
It is this expression by means of which probabilities and expectation values are determined
in our approach. Taking now some observableA(σ) on the hypersurfaceσ , we can express
the transformation law for its expectation value as

〈ψ(σ)|A(σ)|ψ(σ)〉σ 7→ 〈ψ ′(σ ′)|A(σ ′)|ψ ′(σ ′)〉σ ′
= 〈ψ(σ)|U−1(3, y)A(σ ′)U(3, y)|ψ(σ)〉σ . (8)

If A(σ) is a scalar observableA(σ,Q) which is strictly localized at some pointQ on σ ,
we obtain for a Lorentz transformation which leaves invariant this pointQ,

〈ψ ′(σ ′)|A(σ ′,Q)|ψ ′(σ ′)〉σ ′ = 〈ψ(σ)|A(σ,Q)|ψ(σ)〉σ . (9)

This is the correct transformation law for the situation discussed by Diósi. It looks quite
similar to Diósi’s equation (7). The decisive difference is, however, that in our equation (9)
left- and right-hand side refer to the expectation values taken overone and the same
hypersurface:σ and σ ′ representthe same objectivehypersurface as seen from different
inertial frames.

A completely different matter is to look at twoobjectively differenthypersurfacesσ1

andσ2 as, for example, in figure 1. As we have remarked already Diósi’s equation (7) is
wrong at the pointQ, where these surfaces intersect each other. To give an example we
take the scalar observableA(σ,Q) to be the operator

A(σ,Q) = δ(3)(x−Q)n0 (10)
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wheren0 is the time component of the 4-vectorn, which is the unit normal vector ofσ .
By making use of (3) and (7) we then find for the expectation value alongσ2,

〈ψ(σ2)|A(σ2,Q)|ψ(σ2)〉σ2 = 0 (11)

whereas the expectation value alongσ1 yields

〈ψ(σ1)|A(σ1,Q)|ψ(σ1)〉σ1 = χ̄ (2)(Q)nµ1γµχ(2)(Q) 6= 0 (12)

wherenµ1 is the unit normal vector ofσ1. This clearly demonstrates that Diósi’s equation (7)
is incorrect. Note further that the quantity on the right-hand side of equation (12) can be
written as

χ̄ (2)(Q)n
µ

1γµχ
(2)(Q) = nµ1 jµ(Q) (13)

wherejµ is the Dirac current. Thus we see that the expectation value (12) transforms as
a scalar under Lorentz transformations which illustrates, for the present example, that our
equation (9) is indeed correct, in contrast to Diósi’s equation (7).

Although there is a Lorentz transformation that mapsσ1 onto σ2, the statesψ(σ1) and
ψ(σ2) are not, in general, unitarily equivalent. What covariance does require, however, is
the invariance of the probabilities forobjective classical events, as, for example, for the
event to find the particle atP . By this we mean that the different observers passing the
point P with different 4-velocitiesn, that is, with different equal-time hypersurfacesσ(n)
calculate the same probability prob(n, P ) to find the electron atP . This is precisely what
our theory predicts! To see this, we denote byπ(n) the projector which acts on the state
space associated with the hypersurfaceσ(n) throughP , such thatπ(n) = 1 corresponds
to the result that the electron is atP , whereasπ(n) = 0 corresponds to the result that the
electron in not atP . According to our theoryπ(n) obeys the integrability condition [1, 2]

(δνµ − nµnν)
∂π(n)

∂nν
= −i[WµH(n), π(n)] (14)

which ensures thatψ(σ) is really a functional on the set of hypersurfaces. The observer
passing the pointP with equal-time hypersurfaceσ(n) then obtains for the probability to
find the electron atP :

prob(n, P ) = 〈ψ(σ(n))|π(n)|ψ(σ(n))〉σ(n). (15)

Differentiating this expression with respect ton we get

(δνµ − nµnν)
∂

∂nν
prob(n, P ) = 〈ψ(σ(n))|(δνµ − nµnν)

∂π

∂nν
+ i[WµH,π ]|ψ(σ(n))〉σ(n)

= 0

where we have employed equation (35) of [1]. This equation means that

prob(n, P ) = prob(P ) (16)

is independent ofn, which expresses the relativistic invariance of the probability in our
theory.

3. Disproving Diósi’s counterexample

We now turn to a discussion of Diósi’s ‘counterexample’. We shall analyse this example
fully relativistically and on the level of the stochastic wavefunction dynamics.

To begin with, we recall the parametrization of the flat, spacelike hypersurfaces which
is used in our theory. Each hypersurfaceσ is uniquely specified by its unit normal vectorn
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Figure 2. Sketch of the situation considered by Diósi.

and by its Lorentz distancea to some fixed pointb. This means that the pointsx belonging
to a hypersurfaceσ = σ(n, a) are given by the equation

n(x − b) = a. (17)

To see the physical meaning of this parametrization letO be some inertial observer moving
through the spacetime pointb. Denoting byτ the invariant proper time ofO we can
write the worldlinez(τ ) of O asz(τ ) = nτ + b, wheren is the constant 4-velocity ofO.
According to this equation the proper time ofO is chosen such that forτ = 0 he passes the
spacetime pointb. At a fixed proper timeτ the hypersurface which appears as the equal-
time hypersurface inO ’s rest frame is given by the equationn(x − z(τ )) = 0. Inserting
the expression forz(τ ) we getn(x − b) = τ . Comparing this relation with our definition
(17) we see that the equal-time hypersurface in the rest frame ofO at his proper timeτ
is given byσ(n, a = τ). Thus, the quantitya can be interpreted as the proper time of the
observerO, n as his 4-velocity andb as the spacetime point through whichO passes at
τ = a = 0. When discussing the covariance of our stochastic Dirac equation it is important
to realize that these parameters transform asn′ = 3n, a′ = a, b′ = 3b + y under Lorentz
transformations (5). In particular, the quantitya, being a proper time, transforms as a scalar
andn, which is a unit normal vector, transforms as a tangential vector. Consequently, the
quantity s = an transforms as a tangential vector. This is the mistake in Diósi’s argument
put forward in his footnote [3]: he arrives at the erroneous conclusion that our theory breaks
translational covariance† simply because he uses the wrong transformation rules ′ = 3s+y
for s, although the correct rules ′ = 3s has been clearly stated in our papers.

Let us now turn to Díosi’s ‘counterexample’. The situation discussed by Diósi is
depicted in figure 2. It is assumed that an electron has been prepared initially in a definite
spin state described by a wavepacket which is localized at the spacetime pointP with

† It seems that there is another misunderstanding in Diósi’s comment. He always talks aboutrelativistic invariance
whereas we definitely meanrelativistic covariance. We have never claimed that our theory is invariant. How can
it be invariant? It describes an open system!
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coordinatesx = (0, l,0, 0) in the frame indicated in figure 2. We write this initial state as

ψ(n = (1, 0, 0, 0), a = 0) = 1√
2


1
1
0
0

ϕ(x) (18)

which corresponds to the initial density matrix given in equation (10) of Diósi’s comment.
ϕ(x) represents a normalizedc-number function which is localized around the pointP
(given, for example, by a Gaussian of width larger than the Compton wavelength [10]).
As before we shall neglect the extension of the wavepacket as well as its spreading. This
means that we may neglect the Hamiltonian part in comparison to the stochastic part in
the equation which describes thea-dependence of the wave function. Our stochastic Dirac
equation [1] can therefore be written as (choosing units such that ¯h = c = 1)

daψ = − 1
2(L(n, a)− 〈L(n, a)〉)2ψ(n, a)da + (L(n, a)− 〈L(n, a)〉)ψ(n, a)dW(a) (19)

(δνµ − nµnν)
∂ψ(n, a)

∂nν
= −iWµH(n, a)ψ(n, a) (20)

where daψ ≡ ψ(n, a + da) − ψ(n, a), andWµ = anµ − [xµ − bµ], H(n, a) = n/γ 0HD,
andHD is the Dirac Hamiltonian which, for the present case, describes a free particle.
Furthermore, we use the abbreviation〈L(n, a)〉 ≡ 〈ψ(n, a)|L(n, a)|ψ(n, a)〉n,a.

Diósi considers two observers. One observer, called theR-observer, is at rest in the
frame sketched in figure 2. Two of his equal-time hypersurfaces are given byσ(R, 1) and
σ(R, 2). The corresponding unit normal vector of these surfaces is given by

n(0) = (1, 0, 0, 0). (21)

The initial state given in equation (18) is thus a state on the hypersurfaceσ(R, 1) of the
R-observer. The other observer, called theM-observer, is moving with respect to the first
one with velocityv. His equal-time hypersurfaces have the unit normal vector

n(v) = (γ, γv) where γ ≡ (1− v2)−1/2. (22)

In figure 2 we have depicted two of the equal-time hypersurfaces of theM-observer, namely
σ(M, 1) andσ(M, 2).

In his ‘counterexample’ Díosi compares the expectation values of an observable
evaluated along the hypersurfacesσ(R, 2) and σ(M, 2) which intersect at the pointQ.
When determining these expectation values, he obviously uses the pointP ′ as the base
point of the parametrization (17), that is, the Lorentz distancea is measured from the point
b = P ′. What is wrong with this choice is that the equal-time hypersurfaces of theM-
observer have passed the position of the initially localized electron at an earlier (proper)
time. More precisely, there is an equal-time hypersurfaceσ(M, 1) of theM-observer which
intersects the pointP and which lies totally in the past ofσ(M, 2). A comparison between
the measurements of theR-observer and theM-observer, performed after the irreversible
dynamical state vector localization, makes sense only if these observers agree on the initial
preparation event and the corresponding initial state vectors. By some classical preparation
event, theR-observer finds that the electron is atP and assigns the stateψ(n(0), 0) to
his equal-time hypersurfaceσ(R, 1). In agreement with theR-observer, theM-observer
therefore assigns a state to his equal-time hypersurfaceσ(M, 1) which must be unitarily
equivalent toψ(n(0), 0) and is thus connected to this state through equation (4). This
implies that we have to chooseb = P in our parametrization (17). This follows from the
fact that according to equation (20) the stateψ(n(v), 0) on the hypersurfaceσ(M, 1) of the
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M-observer is related to the stateψ(n(0), 0) on the hypersurfaceσ(R, 1) of theR-observer
by the unitary dynamics of the Dirac equation.

Having fixed correctly the initial conditions for the stochastic dynamics we can now
immediately disprove Diósi’s ‘counterexample’. The Lindblad operator in the rest frame of
theR-observer is taken to be

L(n(0), a) =
√
0

2
(1+ σz) 1

2(1+ γ 0) (23)

in accordance with Diósi’s equation (11). By solving the integrability condition [1, 2] with
the boundary condition (23) we getL(n, a). For a � 1/0 the stochastic dynamics drives
the initial statesψ(n, 0) to one of two statesψ±(n, a) with probability 1

2, where

ψ+(n(0), a) =


1
0
0
0

ϕ(x) ψ−(n(0), a) =


0
1
0
0

ϕ(x). (24)

The meaning of these equations is the following. In the rest frame of theR-observer the
stateψ(n(0), 0) is driven to one of the statesψ±(n(0), a) which are given by the above
expressions. In theM-observer’s rest frame the same happens: his initial stateψ(n(v), 0)
is driven to one of the statesψ±(n(v), a). The important point is that these latter states are
related to the statesψ±(n(0), a) of theR-observer through the unitary evolution equation
(20). It follows that for a particular realization of the process the statesψ(n, a) on all
hypersurfaces witha � 1/0 are connected by solving the purely unitary evolution equation
(4). Note that this is a direct consequence of the integrability condition [3], a fact, which
is obviously missed by Diósi.

It should be clear that equation (4), being equivalent to the Dirac equation, does not
depend in any way on the parametersn, a, andb by which we specify the hypersurfaces.
Thus, we may take the pointQ as the new base point of our parametrization, that is, we
define the hypersurfacesσ(n) which intersect the spacetime pointQ by the equation

n(x −Q) = 0. (25)

Consider two such hypersurfaces, namelyσ(R, 2) andσ(M, 2), which intersect the point
Q, as is indicated in figure 2. We measure the observableA(n) along these hypersurfaces.
A(n) is determined as follows. Onσ(R, 2) = σ(n(0)) it is given byσx in agreement with
equation (8) of Díosi. It follows with the help of equation (24) that

〈ψ±(n(0))|A(n(0))|ψ±(n(0))〉n(0) = 0. (26)

The observableA(n(v)) on the equal-time hypersurfaceσ(M, 2) = σ(n(v)) of the M-
observer is determined by solving the integrability condition

(δνµ − nµnν)
∂A(n)

∂nν
= −i[WµH(n),A(n)]. (27)

In the same way as in section 2 we find

(δνµ − nµnν)
∂

∂nν
〈ψ±(n)|A(n)|ψ±(n)〉n = 0 (28)

which means that the expectation value〈ψ±(n)|A(n)|ψ±(n)〉n is independent ofn. Hence
we have

〈ψ±(n(0))|A(n(0))|ψ±(n(0))〉n(0) = 〈ψ±(n(v))|A(n(v))|ψ±(n(v))〉n(v) = 0. (29)
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This equation shows that both observers predict the same expectation value, namely 0.
Diósi’s equation (14) is therefore wrong and there are no inconsistencies in our theory.
Thus, Díosi’s ‘counterexample’ has been disproven.

We conclude with two remarks. First, we have discussed the example on the level of
the stochastic wavefunction dynamics. It should be clear that our results are also valid on
the level of the density matrix which is obtained by taking the ensemble average. Second,
since our arguments are valid for the full relativistic theory, they hold to all orders inv/c

and also in the non-relativistic limit, of course. It is demonstrated in [3] that our relativistic
formulation has indeed a well-defined non-relativistic limit which leads to the Ito equation
of the quantum state diffusion model [4].
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